

The International Conference of the University of Agronomic Sciences and Veterinary Medicine of Bucharest

> AGRICULTURE FOR LIFE, LIFE FOR AGRICULTURE June 6 – 8, 2019, Bucharest, Romania



# THE QUALITY OF SOILS WITH KNOWN ELECTRICAL CONDUCTIVITY

Carmen CONSTANTIN<sup>1,2</sup>, Mihaela ZUGRAVU<sup>1</sup>, Mugurași CONSTANTIN<sup>1</sup>, Maria PARASCHIV<sup>2,4</sup>

<sup>1</sup>University of Agronomic Sciences and Veterinary Medicine of Bucharest, Romania

59 Marasti Blvd, District 1, 011464, Bucharest, Romania,

<sup>2</sup> National Institute of Research and Development for Biological Sciences, 296, Splaiul Independentei, District 6, Bucharest, Romania

<sup>2</sup> Research Center for Advanced Materials, Products and Processes – University Politehnica of Bucharest 313, Spl. Independenței, District 6, Romania

Keywords: ecosystem services, ICP-MS, microwave digestion, salinity, trace elements

#### INTRODUCTION

Around the world salt affects the growth and development of crops, limiting nutrient availability.

Salts have a negative impact on nutrient uptake, the necessary amount for plants and the activity of some enzymes by high concentrations of cations and anions (Fageria et al., 2011).

#### **MATERIALS AND METHODS**

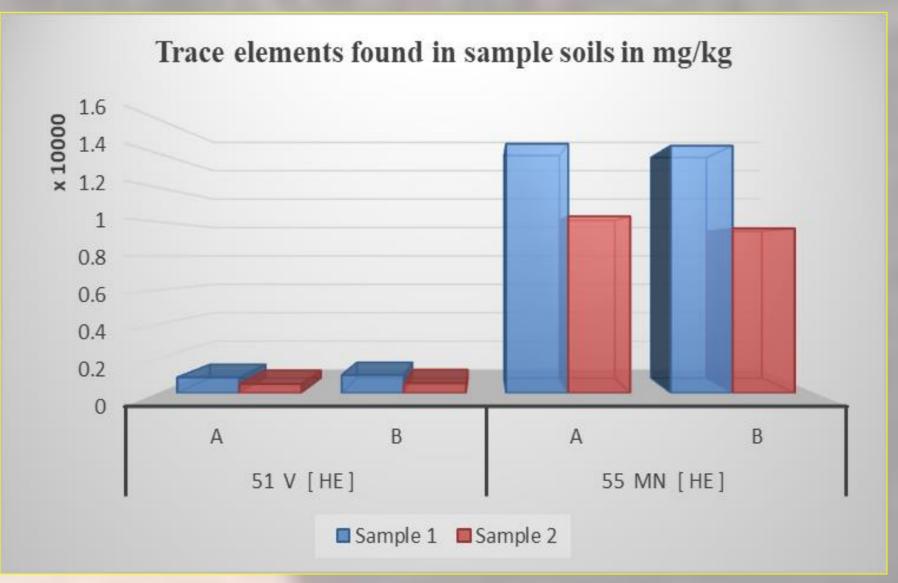
The soil samples were collected from 6 points, of which only 1 and 6 were taken into this study. The samples were collected from the following depths: 0-30 cm, 30-60 cm, 60-90 cm.

The soil electrical conductivity was realized (Amezketa, 2007). The soils samples were mixed resulting 2 samples and subjected to microwave digestion: 0.100 g of soil sample were weighed in Teflon tubes.

The following reagents were added: HNO3, HCI and H2O2. Of them two combinations



were used as follows: method A - HNO3, HCI and H2O2 in 3:1:1 (v/v), and method B - HNO3, HCI 3:1 (v/v), aqua regia (Turek et al., 2012).


The samples were brought to a final volume of 50 ml then subjected to ICP-MS analysis using Helium as carrier gas and an Agilent 7700 + ASX 500 + G3292A Spectrometer.

## **RESULTS AND DISCUSSIONS**

The results regarding electrical conductivity are presented in table 1 The trace element content of the sample are presented in Figures 1 (a, b, and c.).

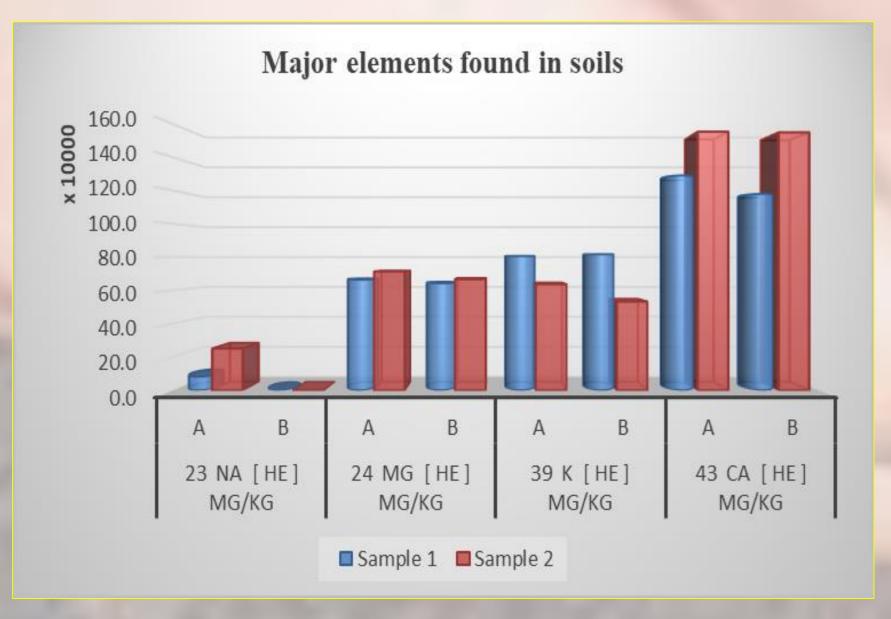
Table. 1. Electrical conductivity of tested soilsamples

| Sample        | EC dS/m |
|---------------|---------|
| P1a, 0-30 cm  | 87,000  |
| P1b, 30-60 cm | 45,000  |
| P1c, 60-90 cm | 30,500  |
| P6a, 0-30 cm  | 106,400 |
| P6b, 30-60 cm | 48,500  |
| P6c. 60-90 cm | 32.000  |

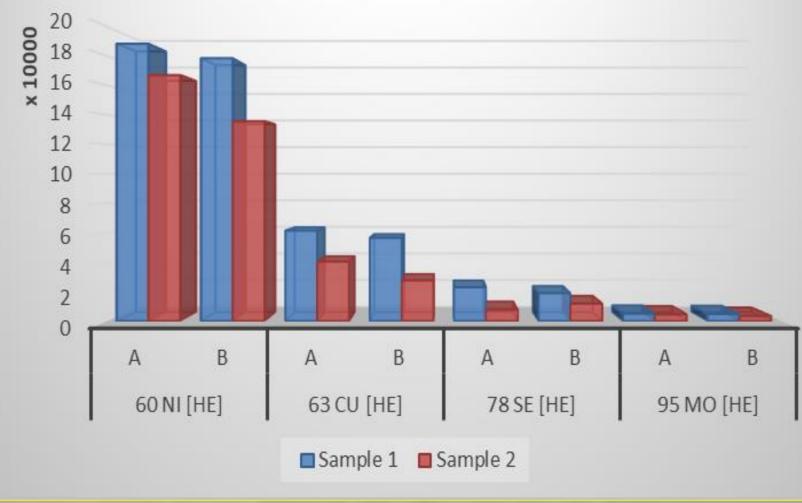




## CONCLUSIONS


- The electrical conductivity values for soils were higher than 4 dS/cm, highlighting a very high salinity content.
- The elemental content (e.g. Na, K, Mg, Ca, V, Mn, Ni, Cu, Se, Mo, Co, Zn, Ag, Cd, Pb) was the same in both case of extraction A and B.
- Mixture A was more efficient than B, as showed the high values of the majority of elements.

## ACKNOWLEDGEMENTS


#### 

\_\_\_\_

Figure. 1a. Results from ICP-MS semi – quantitative analisys



Trace elements found in sample soils in  $\mu g/kg$ 



This work has been developed and was financially supported through the Romanian National Research Program PNIII, Subprogram 3.2 International and European Cooperation -Horizon 2020, financing contract no. 44/2018, Integrated system of bioremediation – biorefinering using halophyte species - code: ERANET-FACCE-SURPLUS-HaloSYS.

#### REFERENCES

Amezketa, E. (2007). Soil salinity assessment using directed soil sampling from a geophysical survey with electromagnetic technology: a case study. Spanish Journal of Agricultural Research, 5(1), 91-101.
Fageria, N. K., Hans, R. Gheyi, Moreira, A. (2011) Nutrient bioavailability in salt affected soils. Journal of Plant Nutrition, 34, 945-962.

• Turek, A., Wieczorek, K., and Wojciech, M. (2019). Wolf digestion procedure and determination of heavy metals in sewage sludge—an analytical problem. Sustainability, 11, 1-10.

Figure. 1c Results from ICP-MS semi – quantitative analysis

Figure. 1b. Results from ICP-MS semi – quantitative analysis